本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
视频识别是由端到端学习范式主导的 - 首先初始化具有预审预周化图像模型的视频识别模型,然后对视频进行端到端培训。这使视频网络能够受益于验证的图像模型。但是,这需要大量的计算和内存资源,以便在视频上进行填充以及直接使用预审计的图像功能的替代方案,而无需填充图像骨架会导致结果不足。幸运的是,在对比视力语言预训练(剪辑)方面的最新进展为视觉识别任务的新途径铺平了道路。这些模型在大型开放式图像文本对数据上进行了预测,以丰富的语义学习强大的视觉表示。在本文中,我们介绍了有效的视频学习(EVL) - 一种有效的框架,用于直接训练具有冷冻剪辑功能的高质量视频识别模型。具体来说,我们采用轻型变压器解码器并学习查询令牌,从剪辑图像编码器中动态收集帧级空间特征。此外,我们在每个解码器层中采用局部时间模块,以发现相邻帧及其注意力图的时间线索。我们表明,尽管有效地使用冷冻的骨干训练,但我们的模型在各种视频识别数据集上学习了高质量的视频表示。代码可在https://github.com/opengvlab/feld-video-rencognition上找到。
translated by 谷歌翻译
深度学习模型能够近似一个特定的动力系统,但在学习通用动力学方面挣扎,在该动态系统中,动态系统遵守了相同的物理定律,但包含不同数量的元素(例如,双重和三铅系统)。为了缓解这个问题,我们提出了模块化拉​​格朗日网络(ModLanet),这是一个具有模块化和物理诱导偏置的结构神经网络框架。该框架使用模块化对每个元素的能量进行建模,然后通过拉格朗日力学构建目标动态系统。模块化有益于重复训练的网络和减少网络和数据集的规模。结果,我们的框架可以从更简单的系统的动力学中学习,并扩展到更复杂的框架,使用其他相关的物理信息神经网络是不可行的。我们研究了使用小型培训数据集建模双体螺旋形或三体系统的框架,与同行相比,我们的模型实现了最佳的数据效率和准确性性能。我们还将模型重新组织为建模多体型和多体系统的扩展,展示了我们框架的可重复使用功能。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
This work introduces alternating latent topologies (ALTO) for high-fidelity reconstruction of implicit 3D surfaces from noisy point clouds. Previous work identifies that the spatial arrangement of latent encodings is important to recover detail. One school of thought is to encode a latent vector for each point (point latents). Another school of thought is to project point latents into a grid (grid latents) which could be a voxel grid or triplane grid. Each school of thought has tradeoffs. Grid latents are coarse and lose high-frequency detail. In contrast, point latents preserve detail. However, point latents are more difficult to decode into a surface, and quality and runtime suffer. In this paper, we propose ALTO to sequentially alternate between geometric representations, before converging to an easy-to-decode latent. We find that this preserves spatial expressiveness and makes decoding lightweight. We validate ALTO on implicit 3D recovery and observe not only a performance improvement over the state-of-the-art, but a runtime improvement of 3-10$\times$. Project website at https://visual.ee.ucla.edu/alto.htm/.
translated by 谷歌翻译
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples. Compared with classical binary classification, the task of PU learning is much more challenging due to the existence of many incompletely-annotated data instances. Since only part of the most confident positive samples are available and evidence is not enough to categorize the rest samples, many of these unlabeled data may also be the positive samples. Research on this topic is particularly useful and essential to many real-world tasks which demand very expensive labelling cost. For example, the recognition tasks in disease diagnosis, recommendation system and satellite image recognition may only have few positive samples that can be annotated by the experts. These methods mainly omit the intrinsic hardness of some unlabeled data, which can result in sub-optimal performance as a consequence of fitting the easy noisy data and not sufficiently utilizing the hard data. In this paper, we focus on improving the commonly-used nnPU with a novel training pipeline. We highlight the intrinsic difference of hardness of samples in the dataset and the proper learning strategies for easy and hard data. By considering this fact, we propose first splitting the unlabeled dataset with an early-stop strategy. The samples that have inconsistent predictions between the temporary and base model are considered as hard samples. Then the model utilizes a noise-tolerant Jensen-Shannon divergence loss for easy data; and a dual-source consistency regularization for hard data which includes a cross-consistency between student and base model for low-level features and self-consistency for high-level features and predictions, respectively.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
成功的材料选择对于设计和制造产品的设计自动化至关重要。设计师通过通过性能,制造性和可持续性评估选择最合适的材料来利用他们的知识和经验来创建高质量的设计。智能工具可以通过提供从先前的设计中学到的建议来帮助具有不同专业知识的设计师。为了实现这一目标,我们介绍了一个图表表示学习框架,该框架支持组装中身体的物质预测。我们将材料选择任务作为节点级预测任务,对CAD模型的汇编图表示,并使用图形神经网络(GNN)对其进行处理。在Fusion 360画廊数据集上执行的三个实验协议的评估表明我们的方法的可行性,达到了0.75 TOP-3 Micro-F1分数。提出的框架可以扩展到大型数据集,并将设计师的知识纳入学习过程。这些功能使该框架可以作为设计自动化的推荐系统以及未来工作的基准,从而缩小了人类设计师与智能设计代理之间的差距。
translated by 谷歌翻译
在这项研究中,我们深入研究了半监督对象检测〜(SSOD)所面临的独特挑战。我们观察到当前的探测器通常遭受3个不一致问题。 1)分配不一致,传统的分配策略对标记噪声很敏感。 2)子任务不一致,其中分类和回归预测在同一特征点未对准。 3)时间不一致,伪Bbox在不同的训练步骤中差异很大。这些问题导致学生网络的优化目标不一致,从而恶化了性能并减慢模型收敛性。因此,我们提出了一个系统的解决方案,称为一致的老师,以补救上述挑战。首先,自适应锚分配代替了基于静态的策略,该策略使学生网络能够抵抗嘈杂的psudo bbox。然后,我们通过设计功能比对模块来校准子任务预测。最后,我们采用高斯混合模型(GMM)来动态调整伪盒阈值。一致的老师在各种SSOD评估上提供了新的强大基线。只有10%的带注释的MS-Coco数据,它可以使用Resnet-50骨干实现40.0 MAP,该数据仅使用伪标签,超过了4个地图。当对完全注释的MS-Coco进行其他未标记的数据进行培训时,性能将进一步增加到49.1 MAP。我们的代码将很快开源。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译